Augmentation of intracellular iron using iron sucrose enhances the toxicity of pharmacological ascorbate in colon cancer cells

نویسندگان

  • Kristin E. Brandt
  • Kelly C. Falls
  • Joshua D. Schoenfeld
  • Samuel N. Rodman
  • Zhimin Gu
  • Fenghuang Zhan
  • Joseph J. Cullen
  • Brett A. Wagner
  • Garry R. Buettner
  • Bryan G. Allen
  • Daniel J. Berg
  • Douglas R. Spitz
  • Melissa A. Fath
چکیده

Pharmacological doses (> 1mM) of ascorbate (a.k.a., vitamin C) have been shown to selectively kill cancer cells through a mechanism that is dependent on the generation of H2O2 at doses that are safely achievable in humans using intravenous administration. The process by which ascorbate oxidizes to form H2O2 is thought to be mediated catalytically by redox active metal ions such as iron (Fe). Because intravenous iron sucrose is often administered to colon cancer patients to help mitigate anemia, the current study assessed the ability of pharmacological ascorbate to kill colon cancer cells in the presence and absence of iron sucrose. In vitro survival assays showed that 10mM ascorbate exposure (2h) clonogenically inactivated 40-80% of exponentially growing colon cancer cell lines (HCT116 and HT29). When the H2O2 scavenging enzyme, catalase, was added to the media, or conditionally over-expressed using a doxycycline inducible vector, the toxicity of pharmacological ascorbate was significantly blunted. When colon cancer cells were treated in the presence or absence of 250µM iron sucrose, then rinsed, and treated with 10mM ascorbate, the cells demonstrated increased levels of labile iron that resulted in significantly increased clonogenic cell killing, compared to pharmacological ascorbate alone. Interestingly, when colon cancer cells were treated with iron sucrose for 1h and then 10mM ascorbate was added to the media in the continued presence of iron sucrose, there was no enhancement of toxicity despite similar increases in intracellular labile iron. The combination of iron chelators, deferoxamine and diethylenetriaminepentaacetic acid, significantly inhibited the toxicity of either ascorbate alone or ascorbate following iron sucrose. These observations support the hypothesis that increasing intracellular labile iron pools, using iron sucrose, can be used to increase the toxicity of pharmacological ascorbate in human colon cancer cells by a mechanism involving increased generation of H2O2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pharmacological ascorbate and ionizing radiation (IR) increase labile iron in pancreatic cancer☆

Labile iron, i.e. iron that is weakly bound and is relatively unrestricted in its redox activity, has been implicated in both the pathogenesis as well as treatment of cancer. Two cancer treatments where labile iron may contribute to their mechanism of action are pharmacological ascorbate and ionizing radiation (IR). Pharmacological ascorbate has been shown to have tumor-specific toxic effects d...

متن کامل

Short-term Chelating Efficacy of Deferoxamine in Iron Overloaded Rat Hepatocytes

Abstract Background: Iron overload is a clinical consequence of repeated blood transfusions and causes significant organ damage, morbidity, and mortality in the absence of proper treatment. The primary targets of Iron chelators used for treating transfusional Iron overload are the prevention of Iron ingress into tissues and its intracellular scavenging. The present study was aimed at elucid...

متن کامل

Redox active metals and H2O2 mediate the increased efficacy of pharmacological ascorbate in combination with gemcitabine or radiation in pre-clinical sarcoma models☆

Soft tissue sarcomas are a histologically heterogeneous group of rare mesenchymal cancers for which treatment options leading to increased overall survival have not improved in over two decades. The current study shows that pharmacological ascorbate (systemic high dose vitamin C achieving ≥ 20mM plasma levels) is a potentially efficacious and easily integrable addition to current standard of ca...

متن کامل

Sodium ascorbate (vitamin C) induces apoptosis in melanoma cells via the down-regulation of transferrin receptor dependent iron uptake.

Sodium ascorbate (vitamin C) has a reputation for inconsistent effects upon malignant tumor cells, which vary from growth stimulation to apoptosis induction. Melanoma cells were found to be more susceptible to vitamin C toxicity than any other tumor cells. The present study has shown that sodium ascorbate decreases cellular iron uptake by melanoma cells in a dose- and time-dependent fashion, in...

متن کامل

The Effect of Iron on Malignant Lymphoblastic Cells Survival and Its Mechanism

Background and Objectives:Anemia is a common complication of chemotherapy. In order to resolve this problem, multiple red blood cell transfusions are administered, leading to iron overload. Given the confirmation of positive correlation between the increased bone marrow iron stores and adverse response to the treatment in the previous study, the effect of iron on the proliferation of acute lymp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2018